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Abstract. The paper studies the performance of multithreaded
parallel implementation of a finite-difference solver for a two-dimensi-
onal space-fractional generalization of Richards equation. For nu-
merical solution we used implicit Crank-Nicholson scheme with L1-
approximation of Caputo fractional derivative and TFQMR linear
systems’ solver. OpenMP implementation was tested on three CPUs
— server Intel Xeon Bronze 3104 and AMD EPYC 7542 along with
laptop AMD Ryzen 3 5300U. Testing results show that the proposed
implementation can give close-to-linear acceleration when executing
on up to 8 cores. On high-performance AMD EPYC maximal ac-
celeration was achieved when 32-64 cores were used showing limited
scalability of the algorithms on such a CPU.
Keywords: moisture transport, fractional derivatives, multithread-
ing, irrigation.

Анотацiя. У статтi дослiджено продуктивнiсть багатопоточної
паралельної реалiзацiї скiнченно-рiзницевого алгоритму для розв’-
язання двовимiрного дробово-диференцiального за просторовою
змiнною узагальнення рiвняння Рiчардса. Для чисельного розв’-
язання використано неявну схему Кранка-Нiколсона з L1-апрокси-
мацiєю дробової похiдної Капуто, а також алгоритм TFQMR для
розв’язання систем лiнiйних алгебраїчних рiвнянь. OpenMP-реа-
лiзацiя була протестована на трьох процесорах — серверних Intel
Xeon Bronze 3104 та AMD EPYC 7542, а також на ноутбуковому
AMDRyzen 3 5300U. Результати тестування показують, що запро-
понована реалiзацiя може надавати близьке до лiнiйного приско-
рення при виконаннi на 8 чи менше процесорних ядрах. На
високопродуктивних AMD EPYC максимальне прискорення було
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досягнуто при використаннi 32-64 ядер, що демонструє обмежену
масштабованiсть алгоритмiв на такому CPU.
Ключовi слова: вологоперенесення, дробовi похiднi, багатопо-
токовiсть, зрошення.

1. Introduction

Simulation of moisture transport has numerous application in hydrology and
agriculture. While in most cases practitioners apply models based on the classic
Richards’ differential equation [1] and corresponding software (e.g. HYDRUS)
there are two fields where additional developments are needed from the stand-
point of more accurate and fast simulation.

At first, let us mention that under certain conditions soils can be considered
as media of fractal structure [2]. Mass and heat transport processes in such me-
dia are non-local and are often modelled using fractional differential equations
[3]. Among the literature related to the fractional-differential generalization
of Richards equation, we can refer to the paper [4] in which time-fractional
equations with Caputo derivative [3] are studied.

The second field is decision support in the design of drip irrigation systems,
especially subsurface ones, for which economic efficiency of irrigation depends
on the quality of the choice of systems’ parameters. A widely used class of
algorithms for their automated selection consists of optimization algorithms
superposed on moisture transport models with objective functions based on
economic assessment of irrigation efficiency. Often (see, e.g. [5]) optimization
is performed by time-consuming meta-heuristic methods making urgent the de-
velopment of algorithms and the usage of computational systems aimed at ac-
celeration of moisture transport simulation. The usage of fractional-differential
models, numerical algorithms for which have higher order of computational
complexity compared to the ones for integer-order models, additionally increase
the need for such developments. While multithreaded implementations of clas-
sical Richards equation solvers are widely studied (see, e.g. [6]), similar studies
for their fractional-order counterparts are unknown to the authors.

In this context, the paper is a continuation of previous authors’ results on
high-performance computing in, particularly fractional-order, modelling of mass
and moisture transport [7, 8, 9] studying the performance of multithreaded
parallel implementation of finite-difference solver for two-dimensional space-
fractional generalization of Richards equation.

2. Mathematical model and numerical method

The space-fractional generalization of Richards equation stated in terms of
water heads and derived similarly to the one-dimensional equation in [7] has
the form

C(h)∂h∂t = Dα
x (kx(H)∂H∂x ) +Dβ

z (kz(H) ∂∂z )− S,
0 ≤ x ≤ Lx, 0 ≤ z ≤ Lz, t ≥ 0, 0 < α < 1,

(1)
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Dα
xH = 1

2(Dα
x,lH +Dα

x,rH),

Dα
x,lH = 1

Γ(1−α)

x∫
0

∂H
∂x (x− ξ)−αdξ,

Dα
x,rH = 1

Γ(1−α)

Lx∫
x

∂H
∂x (ξ − x)−αdξ,

(2)

where Dα
x is the Caputo fractional derivative with respect to the variable x (de-

rivative with respect to z is denoted and defined similarly), h(x, z, t) = P (x,z,t)
ρg

is the water head, m, H(x, z, t) = P (x,z,t)
ρg + z is the full moisture potential, m,

P (x, z, t) is the suction pressure, Pa, ρ is the density of water, kg/m3, g is the
acceleration of gravity,m/s2, C(h) = ∂θ

∂h is the differential soil moisture content,
%/m, θ(x, z, t) is the volumetric soil moisture content, %, kx(H), kz(H) are the
hydraulic conductivities in the fractal dimensions mα/s and mβ/s, S(x, z, t) is
the source function, %/s, that simulates the extraction of moisture by plants’
roots and its supply by subsurface irrigation.

Following [10] we assume that

kx(H) = σα−1
x k(H), kz(H) = σα−1

z k(H),

where σx, σz are fractal dimention constants, m, and k(H) is the hydraulic
conductivity in non-fractal medium, m/s. For simplicity, as only performance
aspects are considered, we further set

σx = σz = 1.

Boundary and initial conditions for Equation 1, the form of the source func-
tion and the configuration of solution domain are the same as the ones for the
integer-order model described in [9].

Water retention curve of soil is described by van Genuchten’s model [11] in
the form

θ(h) = θ0 +
θ1 − θ0

[1 + (10α |h|)n]1−1/n

while the dependency between hydraulic conductivity and moisture potential
is represented according to Averyanov’s model [12] in the form

k(H) = kf

(
θ(H − z)− θ0

θ1 − θ0

)β
,

where kf is the filtration coefficient, β is the fixed exponent.
The model (1), (2) is used to simulate the process of subsurface drip irriga-

tion. We model the start of watering at the moment of time when the average
moisture content of a root zone becomes less than the specified value. Watering
continues until the average moisture content reaches some upper limit usually
equal to field capacity. Moisture content is averaged according to the function
of root system density with higher weight coefficients for the areas where root
system is denser.

The used approach is described in more detail in [7, 9].
The numerical solution of the initial-boundary value problem for the model

based on Equations (1), (2) is performed according to the implicit finite-difference
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Crank-Nicholson scheme [13] on a uniform grid

ω =
{

(xi = ihx, zk = khz, tj = jτ) : i = 0,m, k = 0, n, j = 0, 1, 2, ...
}
, (3)

where hx = Lx/m, hz = Lz/n are the steps with respect to the space variables,
τ is the step with respect to the time variable. Here and further, grid analogue
of the sought-for function h and, similarly, the other functions is denoted as
hjik = h(xi, zk, tj).

On the grid (3) using the solution on the previous time step for non-local
part of the derivative (2) we obtain the following 5-diagonal linear equations
system given here without obvious discretizations of boundary conditions:

hji−1,kA
j−1
1,i,k + hji,k−1A

j−1
2,i,k + hji+1,kB

j−1
1,i,k + hji,k+1B

j−1
2,i,k − h

j
i,k ·R

j−1
i,k = Φj−1

i,k ,

where

Aj−1
1,i,k =

1

4
Dx(k(Hj−1

i−1,k) + k(Hj−1
i,k )), Aj−1

2,i,k =
1

4
Dz(k(Hj−1

i,k−1) + k(Hj−1
i,k )),

Bj−1
1,i,k =

1

4
Dx(k(Hj−1

i+1,k) + k(Hj−1
i,k )), Bj−1

2,i,k =
1

4
Dz(k(Hj−1

i,k+1) + k(Hj−1
i,k )),

Dx =
h−1−α
x

Γ(2− α)
, Dz =

h−1−β
z

Γ(2− β)
,

Rj−1
i,k = Aj−1

1,i,k +Aj−1
2,i,k +Bj−1

1,i,k +Bj−1
2,i,k +

C(hj−1
i,k )

τ
,

Φj−1
i,k = −hj−1

i−1,kA
j−1
1,i,k − h

j−1
i,k−1A

j−1
2,i,k − h

j−1
i+1,kB

j−1
1,i,k − h

j−1
i,k+1B

j−1
2,i,k+

+(Aj−1
1,i,k +Aj−1

2,i,k +Bj−1
1,i,k +Bj−1

2,i,k −
C(hj−1

i,k )

τ
)hj−1
i,k − S

j
i,k−

−∆j−1
i,k +Dxhx(k(Hj−1

i,k+1)− k(Hj−1
i,k )).

Here ∆j−1
i,k describes the ’non-local’ part of the fractional derivative and has

the form

∆j−1
i,k =

1

2

m−1∑
l=1,l 6=i

(
|i− l + 1|1−α − |i− l|1−α

)
hj−1
xx,l,k+

+
1

2

n−1∑
l=1,l 6=k

(
|k − l + 1|1−β − |k − l|1−β

)
hj−1
zz,i,l,

hj−1
xx,i,k = 2Dx

(
hj−1
i−1,kA

j−1
1,i,k + hj−1

i+1,kB
j−1
1,i,k − h

j−1
i,k (Aj−1

1,i,k +Bj−1
1,i,k)

)
,

hj−1
zz,i,k = 2Dz(h

j−1
i,k−1A

j−1
2,i,k + hj−1

i,k+1B
j−1
2,i,k − h

j−1
i,k (Aj−1

2,i,k +Bj−1
2,i,k)+

+0.5hx(k(Hj−1
i,k+1)− k(Hj−1

i,k )).

The corresponding linear systems are solved by the TFQMR algorithm [14].
The initial time step length is taken to be equal to 1 s and changes during

the simulation based on the hypothesis about the correlation between the time
step and the condition number of a matrix along with the correlation of the
condition number and the number of iterations of the solution algorithm — the
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step is multiplied on a given value (here equal to 1.25) when the number of
iterations of the TFQMR algorithm exceeds a given maximum value (here 20).

The solution at the appropriate time step is then repeated. If the number of
iterations is less when 1/3 of the maximum value, the length of the next time
step increases the same way.

Let us also mention that the presented scheme’s accuracy and convergence
is not studied here as these matters have no impact on the main topic — the
performance of the scheme’s multithreaded implementation.

3. Multithreaded implementation
The solution procedure on one time step was implemented in multithreaded

environment using OpenMP. All computations are performed in a single paral-
lel block. Within the TFQMR algorithm all summations are implemented in
parallel using reduction directive.

Scalar variables are updated in the single environment. Before starting
solver’s iterations the values of

Aj−1
1,i,k, Aj−1

2,i,k, Bj−1
1,i,k, Bj−1

2,i,k, Rj−1
i,k , Φj−1

i,k

are calculated in parallel. The values of

Hj−1
xx,l,k, Hj−1

zz,i,l

are calculated in parallel before the calculation of ∆j−1
i,k .

4. Performance testing
Input data described in [9] were used for computational experiments. A

single-layered soil model with the filtration coefficient of 15 cm/day was con-
sidered. Simulation domain was 10 m wide and 1 m deep. At its lower and
lateral boundaries the free-flow boundary conditions were set. Irrigation was
applied in the simulation then average moisture content in 0.5 m-deep layer of
soil that model the root zone fell lower than 95% of field capacity and lasted
until it became higher than 100% of field capacity. Fixed evapotranspiration
was set to be equal to 5.1 mm/day.

The first series of simulations were performed for m = 1000, n = 100 for
time up to 1 day for two cases: α = β = 1 that corresponds to the classical
integer-order model and α = β = 0.98. The modelled dynamics of average
moisture content in the root zone for these two cases is shown in Fig. 1.

Total irrigation volume for 1 day period here is 6.9% less for the fractional-
order model compared to the classical one with four waterings proposed by both
models. Interval between waterings was larger for the fractional-order model
while their duration is lower.

Total water content in the simulation domain was at the end of the modelled
period higher for the case of the classical model that means less irrigation water
outflow below the root zone when soil structure has even slightly pronounced
fractal properties.

Computions were performed on a node of SCIT-5 cluster of VM Glushkov
Institute of Cybernetics with AMD EPYC 7542 CPUs, on a node of SCIT-45
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Figure 1. Dynamics of average moisture content: (1) —
integer-order model, (2) — space-fractional model with α =
β = 0.98

Table 1. Execution time averaged among 5 runs, s

α = β = 1 α = β = 0.98
n threads Ryzen Xeon EPYC Ryzen Xeon EPYC

1 135 327 142,25 365 1105 484
2 121 179 81 239 573 256
4 89 154 67,25 156 341 180
8 79 115 66 127 223 125
16 62 117
32 47 94
64 66,5 81

cluster with Intel Xeon Bronze 3104 CPUs, and on a laptop with AMD Ryzen
3 5300U CPU. Execution times averaged among 5 runs are given in Tab. 1. In
all cases each thread was executed in a separate core.

Here, differences in execution time in a single-threaded mode are roughly
similar to single thread performance of the used CPUs reported on

www.cpubenchmark.net.

Fractional-order modelling was 2.7-3.4-times slower in a single-threaded mode.
With the increase of thread number this difference decreased because of higher
speed-up when fractional-order model was used.

Higher acceleration of computations in this case is due to lower ratio of
execution time between parallely executable blocks and blocks that are executed
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Table 2. Maximum acceleration and overall relative errors
subject to the grid size parameter n

α = β = 1 α = β = 0.98
n = 50 100 150 50 100 150

Maximum acceleration 2.58 3.03 4.30 3.88 5.93 9.15
Overall relative error 9.95% 8.30% 5.43% 5.06% 3.03% 1.21%

in a single thread plus the needed synchronizations. The cause of the latter is
the need to compute non-local part of the fractional derivative.

High amount of reduction operations in TFQMR algorithm leads to only
3-times maximal speed-up (32 threads, AMD EPYC, with further increase of
thread number increasing execution time) achieved while solving integer-order
problem while 6-times speed-up (64 threads, AMD EPYC) was achieved for
the fractional-order one.

Running on 8 threads (the maximal number tested on all three CPUs) the
highest acceleration of computation was measured on Intel Xeon CPU and the
lowest — on AMD Ryzen 3.

It also should be noted that on AMD EPYC high coefficients of variation
(>15%) of execution times among performed runs were observed when 8 and
more cores were used. Other CPUs did not demonstrate such a behaviour.

The second series of simulations was aimed at testing multithreaded imple-
mentation’s performance on AMD EPYC CPU when grid size changes (n =
50, 100, 150, m = 10n, number of threads P = 1, 2, 4, 8, 16, 32, 64).

Assuming that the time t1(P ) spent on executing barrier synchronizations
and single-threaded blocks is t1(P ) ≤ k2P we assess total execution time as

T (n, P ) = k1
n

P
+ k2P (4)

where k1, k2 are the performance coefficients.
For each value of n we measured execution time Te(n, P ) and computed the

maximum acceleration of computations along with the overall relative error of
the description of execution time changes subject to the number of threads

ε(n) =

∑
i

(T (n, Pi)− Te(n, Pi))2∑
i
T 2
e (n, Pi)

.

Coefficient values of the performance model (4) for a fixed n and a series of
P values were determined by the least squares fitting. The computed values
are given in Tab. 2.

Maximum acceleration here increased close-to-linearly with the increase of
n. It should also be noted that due to the usage of the procedure of dynamic
time step selection, number of time steps also increased with the increase of n
making impossible direct comparison of execution times.

Overall relative error of their description by the classical model (4) lowered
with the increase of n being within the 10% limit.
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However, local relative errors were in some cases up to 50% for P ≥ 4 due
to high variability of execution times in these cases.

The ratio k1/k2 was in the narrow ranges [1.08, 1.24] for the classical model
and [2.68, 3] for the fractional-order one that supports the applicability of the
performance model (4) and additionally confirms higher computational com-
plexity when solving fractional differential equations.

5. Conclusion

Regarding the obtained experimental results it could be stated that the pro-
posed multithreaded implementation of the solver for the space-fractional two-
dimensional moisture transport equation can be efficient when executing on up
to 8 cores on modern CPUs.

However, its efficiency is limited (maximal acceleration was achieved when
32-64 cores were used) on high-performance AMD EPYC CPUs due to a large
number of blocks that needs execution in a single thread in the used TFQMR
linear solver.

Thus, regarding optimization problems solved by meta-heuristic algorithms
on EPYC CPUs it could be efficient to employ both task and data level par-
allelism restricting the scale of the latter using the obtained performance esti-
mates.
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