CONVERGENCE OF ADAPTIVE EXTRA-PROXIMAL ALGORITHMS FOR EQUILIBRIUM PROBLEMS IN HADAMARD SPACES
Abstract
New iterative extra-proximal algorithms have been pro\-posed and investigated for approximate solution of problems of equilibrium in Hadamard metric spaces. The para\-meter update rule does not use the values of the Lipschitz constants of the bifunction. In contrast to the rules of the linear search type, it does not require calculations of the bifunction values at additional points. In addition, at the initial stages of the algorithms, the step size parameter can increase from iteration to iteration. For pseudo-monotone bifunctions of the Lipschitz type we proved convergence theorems. It is shown that the proposed algorithms are applicable to pseudo-monotone variational inequalities in Hilbert spaces.
References
Kassay G., Radulescu V. D. Equilibrium Problems and Applications. London: Academic Press, 2019. xx + 419 p.
Nikaido H., Isoda K. Note on noncooperative convex games. Pacific Journal of Mathematics. 1955. Vol. 5. P. 807–815.
Blum E., Oettli W. From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994. 63. P. 123–145.
Muu L. D. and Oettli W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. TMA. 1992. 18. P. 1159–1166.
Lions J. L., Stampacchia G. Variational inequalities. Commun. Pure Appl. Math. 1967. Vol. XX. P. 493–519.
Kinderlehrer D. Stampacchia G. An introduction to variational inequalities and their applications. New York: Academic Press, 1980. Russian transl., Moscow: Mir, 1983. 256 p.
Combettes P. L., Hirstoaga S. A. Equilibrium Programming in Hilbert Spaces. J. Nonlinear Convex Anal. 2005. Vol. 6. P. 117–136.
Nemirovski A. Prox-method with rate of convergence O(1/T) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 2004. Vol. 15. Issue 1. P. 229–251. https://doi.org/10.1137/S1052623403425629
Gidel G., Berard H., Vincent P., Lacoste-Julien S. A Variational Inequality Perspective on Generative Adversarial Networks. arXiv:1802.10551. 2018.
Antipin A. S. Equilibrium programming: gradient methods. Part 2. Autom. Remote Control. 1997. 58 (8). P. 1337–1347.
Antipin A. Equilibrium programming problems: prox-regularization and proxmethods. In: Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 452, Springer, Heidelberg, 1997. P. 1–18.
Antipin A. S., Flam S. D. Equilibrium programming using proximal-like algorithms. Math. Program. 1997. 78. P. 29–41.
Mastroeni G. On auxiliary principle for equilibrium problems. In: Daniele, P. et al. (eds.) Equilibrium Problems and Variational Models. Kluwer Academic Publishers, Dordrecht, 2003. P. 289–298.
Quoc T. D., Muu L. D., Hien N. V. Extragradient algorithms extended to equilibrium problems. Optimization. 2008. Vol. 57. P. 749–776. https://doi.org/10.1080/02331930601122876
Bauschke H. H., Combettes P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Berlin, Heidelberg, New York: Springer, 2011. 408 p.
Van N. T. T., Strodiot J. J., Nguyen V.H. A bundle method for solving equilibrium problems. Math. Program. 2009. 116 (1–2), Ser. B. P. 529–552.
Anh P. N. Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 2012. 154. P. 303–320. https://doi.org/10.1007/s10957-012-0005-x
Vuong P. T., Strodiot J. J, Nguyen V. H. Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 2012. 155. P. 605–627.
Quoc T. D., Anh P. N., Muu L. D. Dual extragradient algorithms to equilibrium problems. J. Glob. Optim. 2012. 53. P. 139–159. https://doi.org/10.1007/s10898-011-9693-2
Vuong P. T., Strodiot J. J., Nguyen V. H.: On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space. Optimization. 2015. 64 (2). P. 429–451. https://doi.org/10.1080/02331934.2012.759327
Anh P. N., Hai T. N., Tuan P. M. On Ergodic Algorithms for Equilibrium Problems. J. Glob. Optim. 2016. 64 (1). P. 179–195. https://doi.org/10.1007/s10898-015-0330-3
Vedel Y. I., Semenov V. V. A new two-phase proximal method of solving the problem of equilibrium programming. J. Num. Appl. Math. 2015. No. 1 (118). P. 15–23. (in Russian)
Vedel Y. I., Denisov S. V., Semenov V. V. An Adaptive Algorithm for the Variational Inequality Over the Set of Solutions of the Equilibrium Problem. Cybernetics and Systems Analysis. 2021. Vol. 57. Issue 1. P. 91–100. https://doi.org/10.1007/s10559-021-00332-2
Nguyen T. P. D., Strodiot J. J., Nguyen V. H., Nguyen T. T. V. A family of extragradient methods for solving equilibrium problems. J. Ind. Manag. Optim. 2015. 11. P. 619–630.
Zykina A. V., Melenchuk N. V. Finite number of iterations in the two-step extragradient method. Russian Mathematics. 2014. Volume 58. Issue 9. P. 62–65.
Bacak M. Convex Analysis and Optimization in Hadamard Spaces. Berlin-Boston: De Gruyter, 2014. viii+185 p.
Colao V., Lopez G., Marino G., Martin-Marquez V. Equilibrium problems in Hadamard manifolds. Journal of Mathematical Analysis and Applications. 2012. Vol. 388. P. 61–77. https://doi.org/10.1016/j.jmaa.2011.11.001
Khatibzadeh H., Mohebbi V. Monotone and pseudo-monotone equilibrium problems in Hadamard spaces. Journal of the Australian Mathematical Society. 2019. P. 1–23. https://doi.org/10.1017/S1446788719000041
Khatibzadeh H., Mohebbi V. Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Mathematical Notes. 2019. Vol. 20. No. 1. P. 281–297. https://doi.org/10.18514/MMN.2019.2361
Vedel Y. I., Sandrakov G. V., Semenov V. V. An Adaptive TwoStage Proximal Algorithm for Equilibrium Problems in Hadamard Spaces. Cybernetics and Systems Analysis. 2020. Vol. 56. Issue 6. P. 978–989. https://doi.org/10.1007/s10559-020-00318-6
Vedel Y. I., Sandrakov G. V., Semenov V. V., Chabak L. M. Convergence of a Two-Stage Proximal Algorithm for the Equilibrium Problem in Hadamard Spaces. Cybernetics and Systems Analysis. 2020. Vol. 56. Issue 5. P. 784–792. https://doi.org/10.1007/s10559-020-00299-6
Vedel Y. I., Denisov S. V., Semenov V. V. Regularized Adaptive ExtraProximal Algorithm for Equilibrium Problem in Hadamard Spaces. Journal of Automation and Information Sciences. 2020. Vol. 52. Issue 9. P. 12–26. https://doi.org/10.1615/JAutomatInfScien.v52.i9.20
Vedel Y. I., Golubeva E. N., Semenov V. V., Chabak L. M. Adaptive Extraproximal Algorithm for the Equilibrium Problem in the Hadamard Spaces. Journal of Automation and Information Sciences. 2020. Vol. 52. Issue 8. P. 46–58. https://doi.org/10.1615/JAutomatInfScien.v52.i8.40
Semenov V., Vedel Y. Convergence of adaptive methods for equilibrium problems in Hadamard spaces. Proceedings of the 7th International Conference «Information Technology and Interactions» (IT&I-2020). Workshops Proceedings Kyiv, Ukraine, December 02-03, 2020. CEUR Workshop Proceedings, vol. 2845. 2021. P. 321–335.
Vedel Y., Semenov V. Adaptive Extraproximal Algorithm for the Equilibrium Problem in Hadamard Spaces. In: Olenev N., Evtushenko Y., Khachay M., Malkova V. (eds) Optimization and Applications. OPTIMA 2020. Lecture Notes in Computer Science, vol. 12422. Springer, Cham, 2020. P 287–300. https://doi.org/10.1007/978-3-030-62867-3_21
Popov L. D. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical notes of the Academy of Sciences of the USSR. 1980. Vol. 28. Issue 5. P. 845–848. https://doi.org/10.1007/BF01141092
Malitsky Yu. V., Semenov V. V. An extragradient algorithm for monotone variational inequalities. Cybernetics and Systems Analysis. 2014. Vol. 50. P. 271–277. doi: https://doi.org/10.1007/s10559-014-9614-8
Lyashko S. I., Semenov V. V. A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium Programming. In: B. Goldengorin (ed.) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, vol. 115. Springer, Cham, 2016. P. 315–325. https://doi.org/10.1007/978-3-319-42056-1_10
Kirk W., Shahzad N. Fixed point theory in distance spaces. Cham: Springer, 2014. xii+173 p. https://doi.org/10.1007/978-3-319-10927-5
Burago D., Burago Yu., Ivanov S. A Course in Metric Geometry. Graduate Studies in Mathematics. Vol. 33. Providence: AMS, 2001. xiv+415 p.
Mainge P.-E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Analysis. 2008. Vol. 16. P. 899–912. https://doi.org/10.1007/s11228-008-0102-z
Denisov S. V., Semenov V. V., Stetsyuk P. I. Bregman Extragradient Method with Monotone Rule of Step Adjustment. Cybernetics and Systems Analysis. 2019. Vol. 55. Issue 3. P. 377–383. https://doi.org/10.1007/s10559-019-00144-5
Denisov S.V., Nomirovskii D. A., Rublyov B.V., Semenov V.V. Convergence of Extragradient Algorithm with Monotone Step Size Strategy for Variational Inequalities and Operator Equations. Journal of Automation and Information Sciences. 2019. Vol. 51. Issue 6. P. 12–24. https://doi.org/10.1615/JAutomatInfScien.v51.i6.20
Halpern B. Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 1967. 73. P. 957–961. https://doi.org/10.1090/S0002-9904-1967-11864-0
Lyashko S. I., Semenov V. V., Voitova T. A. Low-cost modification of Korpelevich’s methods for monotone equilibrium problems. Cybernetics and Systems Analysis. 2011. Vol. 47. Issue 4. P. 631–639. https://doi.org/10.1007/s10559-011-9343-1