A SYSTEM OF INTELLECTUAL ANALYSIS AND PREDICTION OF REACTIONS TO NEWS BASED ON DATA FROM TELEGRAM CHANNELS

  • O. Yu. Kosukha Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Iu. M. Shevchuk Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Keywords: natural language processing, sentiment analysis, naive Bayes classifiers, social media, Telegram messenger

Abstract

This research paper provides a description of the system of intellectual analysis and prediction of reactions to news based on data from Telegram channels. In particular, the features of collecting and pre-processing datasets for the system, the methodology of thematic analysis of the received data, and the model used to obtain predictions of reactions to Telegram messages depending on their text are described.

References

Mondal A., Dey M., Das D., Nagpal S., Garda K. Chatbot: An automated conversation system for the educational domain. 2018 International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). 2018. P. 1–5.

Gunawan T. S., Babiker A. B. F., Ismail N., Effendi M. R. Development of Intelligent Telegram Chatbot Using Natural Language Processing. In 2021 7th International Conference on Wireless and Telematics (ICWT). 2021. P. 1–5

Karimpour D., Chahooki M. A. Z., Hashemi A. User recommendation based on Hybrid filtering in Telegram messenger. 26th International Computer Conference, Computer Society of Iran (CSICC). 2021. P. 1–7.

Hashemi A., Zare Chahooki M. A. Telegram group quality measurement by user behavior analysis. Social Network Analysis and Mining. 2019. 9(1). P. 1–12.

Karimpour D., Zare Chahooki M. A., Hashemi, A. User recommendation in Telegram messenger by graph analysis and mathematical modeling of users’ behavior. Journal of Information and Communication Technology. 2021. 49(49). 151.

Eichstaedt J. C., Smith R. J., Merchant R. M., Ungar L. H., Crutchley P., Preofiuc-Pietro D., Schwartz H. A. Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences. 2018. 115(44). P. 11203–11208.

Kachamas P., Akkaradamrongrat S., Sinthupinyo S., Chandrachai A. Application of artificial intelligent in the prediction of consumer behavior from Facebook posts analysis. International Journal of Machine Learning and Computing. 2019. 9(1). P. 91–97.

Han B., Cook P., Baldwin T. Text-based twitter user geolocation prediction. Journal of Artificial Intelligence Research. 2014. 49. P. 451–500.

Jordan S. E., Hovet S. E., Fung I. C. H., Liang H., Fu K. W., Tse Z. T. H. Using Twitter for public health surveillance from monitoring and prediction to public response. Data. 2018. 4(1). P. 6.

Essien A., Petrounias I., Sampaio P., Sampaio S. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. World Wide Web. 2021. 24(4). P. 1345–1368.

Telegram APIs. Access: https://core.telegram.org/

Telegram Channel TSN. Assess: https://t.me/TCH_channel

Code of program implementation. Assess: https://github.com/KosukhaOlexandr/reactions_prediction/blob/main/clear_dataset.py

Mosteller F., Wallace D. L. Inference and disputed authorship: The Federalist. Stanford Univ Center for the Study. 2007.

Kozak Ye. B. Principles of implementation of machine learning models in intellectual serving of industrial equipment. Tavriyskiy naukovyi visnyk. Seriya: Tekhnichni nauky. 2021. (3). P. 19–28.

Biletsky T.P., Fedasyuk D.V. Prediction of defects of software for deep learning CNN and RNN. Naukovui visnyk NLTU of Ukraine. 2021. 31(2). P. 114–120.

Ahmad F., Tang X. W., Qiu J. N., Wrzblewski P., Ahmad M., Jamil I. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation. Math. Biosci. Eng. 2022. 19. P. 4526–4546.

Kewsuwun N., Kajornkasirat S. A sentiment analysis model of agritech startup on Facebook comments using naive Bayes classifier. International Journal of Electrical & Computer Engineering (2088-8708). 2022. 12(3).

Cortes C., Vapnik V. Support-Vector Networks. Machine Leaming. 1995. 20. P.273—297.

Jose C., Goyal P., Aggrwal P., Varma M. Local deep kernel learning for efficient non-linear svm prediction. In International conference on machine learning. 2013. P. 486–494.

Pokidin D. Econometrical model of National Bank of Ukraine for estimating bank risks and alternative support vector machine. Visnyk Natsionalnogo Banku Ukrainy. 2015. 234. P. 53.

Verlan A. I., Oleksiy A. O. Overview and comparison of machine learning methods for recognition of hydroacoustics signals. Infokomunikatsiyni computerni tekhnologii. 2022. 1 (03). P. 296–306.

Ramasamy L. K., Kadry S., Nam Y., Meqdad M. N. Performance analysis of sentiments in Twitter dataset using SVM models. Int. J. Electr. Comput. Eng. 2021. 11(3). P. 2275–2284.

Published
2023-02-02
How to Cite
Kosukha, O., & Shevchuk, I. (2023). A SYSTEM OF INTELLECTUAL ANALYSIS AND PREDICTION OF REACTIONS TO NEWS BASED ON DATA FROM TELEGRAM CHANNELS. Journal of Numerical and Applied Mathematics, 1(2), 59-66. https://doi.org/10.17721/2706-9699.2022.2.07