METHODS FOR PROBLEMS OF VECTOR GENERALIZED OPTIMAL CONTROL OF SYSTEMS WITH DISTRIBUTED PARAMETERS
Abstract
The paper develops the theory of existence and necessary optimality conditions for optimal control problems with a vector quality criterion for systems with distributed parameters and generalized impacts. The concept of $(K, e, \epsilon)$-approximate efficiency is investigated. Necessary conditions for $(K, e, \epsilon)$-approximate efficiency of admissible controls in the form of variational inclusions are proved. Methods for solving problems of vector optimization of linear distributed systems with generalized control are proposed. Convergence of algorithms with errors is proved.
References
Salukvadze M. E. Vector optimization problems in control theory. Tbilisi: Metsniereba, 1975. 201 p. (in Russian)
Stadler W. A Survey of Multicriteria Optimization or the Vector Maximum Problem, Part I: 1776-1960. Journal of Optimization Theory and Applications. 1979. Vol. 29. No. 1. Р. 1–52.
Dauer J. P., Stadler W. A Survey of Vector Optimization in Infinite-Dimensional Spaces, Part 2. Journal of Optimization Theory and Applications. 1986. Vol. 51. No. 2. Р. 205–241.
Gorokhovik V. V. Convex and nonsmooth vector optimization problems. Minsk: Navuka i tekhnika, 1990. 238 p. (in Russian)
Gopfert A., Tammer Chr., Riahi H., Zalinescu C. Variational Methods in Partially Ordered Spaces. New York–Berlin–Heidelberg: Springer-Verlag, 2003. 350 p.
Podinovskiy V.V., Nogin V.D. Pareto-optimal solutions of multicriteria problems. 2nd ed., Rev. and add. Moscow: FIZMATLIT, 2007. 256 p. (in Russian)
Fliege J., Svaiter B. F. Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research. 2000. Vol. 51. Issue 3. Р. 479–494.
Zhu Q. J. Hamiltonian necessary conditions for a multiobjective optimal control problem with endpoint constraints. SIAM J. Control Optim. 2000. Vol. 39. No. 1. Р. 97–112.
Zhukovsky V. I., Chikriy A. A. Linear-quadratic differential games. Kiev: Naukova Dumka, 1994. 320 p. (in Russian)
Ramos A. M., Glowinski R., Periaux J. Nash Equilibria for the Multi-Objective Control of Linear Partial Differential Equations. Journal of Optimization Theory and Applications. 2002. 112 (3). Р. 457–498.
Ramos A. M., Glowinski R., Periaux J. Pointwise Control of the Burgers Equation and related Nash Equilibrium Problems: A Computational Approach. Journal of Optimization Theory and Applications. 2002. 112 (3). Р. 499–516.
Lions J.-L. Controle de Pareto de Systemes Distribues: Le Cas stationnaire. Comptes Rendus de l’Academie des Sciences, Serie I. 1986. Vol. 302. Р. 223–227.
Lions J.-L. Controle de Pareto de Systemes Distribues: Le Cas d’evolution. Comptes Rendus de l’Academie des Sciences, Serie I. 1986. Vol. 302. Р. 413–417.
Nakoulima O., Omrane A., Velin J. On the Pareto Control and No-Regret Control for Distributed Systems with Incomplete Data. SIAM Journal on Control and Optimization. 2003. Vol. 42. No. 4. Р. 1167–1184.
Bensoussan A., Lions J.-L., Temam R. Methods of decomposition, decentralization, coordination and their applications. Computational mathematics methods. Novosibirsk: Nauka, 1975, pp. 144–274. (in Russian)
Lyashko S. I. Generalized optimal control of linear systems with distributed parameters. Boston–Dordrecht–London: KluwerAcademicPublishers, 2002.466p.
Lyashko S. I., Nomirovsky D. A., Semenov V. V. Investigation of linear distributed systems with generalized control. Journal of Computational and Applied Mathematics. 2004. No. 2 (91). P. 31–45. (in Ukrainian)
Semenov V. V., Semenova N. V. On a vector control problem in a Hilbert space. Cybernetics and Systems Analysis. 2005. No. 2. P. 117–130. (in Russian)
Semenov V. V. Problem of vector optimization of linear distributed systems with singular control. Dopovidi NANU. 2004. No. 10. P. 74–80. (in Russian)
Klyushin D. A., Lyashko S. I., Nomirovskii D. A., Petunin Yu. I., Semenov V. V. Generalized Solutions of Operator Equations and Extreme Elements. New York– Dordrecht–Heidelberg–London: Springer, 2012. 202+xxi p.
Charin V. S. Linear transformations and convex sets. Kiev: Vishcha school, 1978.192 p. (in Russian)
Mordukhovich B. Sh. Approximation Methods in Optimization and Control Problems. Moscow: Nauka, 1988.359 p. (in Russian)
Dubovitskiy A. Ya., Milyutin A. A. Extremum Problems with Constraints. DAN USSR. 1963. Vol. 149. No. 4. P. 759–762. (in Russian)
Kassay G., Radulescu V.D. Equilibrium Problems and Applications. London: Academic Press, 2019. 419 p.
Lyashko S. I., Semenov V. V. A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium Programming. In: Goldengorin B. (ed.) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, 115, Springer, Cham, 2016. P. 315–325.
Tammer Chr. Approximate solutions of vector-valued control-approximation problems. Studies in Locational Analysis. 1996. 10. Р. 151–162.
Finet C. Perturbed minimization principles in partially ordered Banach spaces. Institut de Mathematique et d’Informatique, Universite de Mons-Hainaut. Preprint 2 (2000). Р.1–16.
Mikhalevich V. S., Gupal A. M., Norkin V. I. Methods of non-convex optimization. Moscow: Nauka, 1987. 279 p. (in Russian)