GAUSS APPROXIMATION FOR NUMBER DISTRIBUTION IN OF A PASCAL’S TRIANGLE
Abstract
We received normal distribution parameters that approximates the distribution of numbers in the n-th row of Pascal's triangle. We calculated the values for normalized moments of even orders and shown their asymptotic tendency towards values corresponding to a normal distribution. We have received highly accurate approximations for central elements of even rows of Pascal's triangle, which allows for calculation of binomial, as well as trinomial (or, in general cases, multinomial) coefficients. A hypothesis is proposed, according to which it is possible that physical and physics-chemical processes function according to Pascal's distribution, but due to how slight its deviation is from a normal distribution, it is difficult to notice. It is also possible that as technology and experimental methodology improves, this difference will become noticeable where it is traditionally considered that a normal distribution is taking place.
References
Abramov G.S., Abramov I.M. Normalnoe priblizhenie dlya raspredeleniya chisel v strokah treugolnika Paskalya. Vestnik HNTU. 2014. 3(50). P. 185–191.
Abramov G.S., Abramov I.M. Gaussovskaya approksimatsiya dlya raspredeleniya chisel v strokah treugolnika Paskalya. Vestnik HNTU. 2015. 3(54). P. 319–325.
Grehem R., Knut D., Patashnik O. Konkretnaya matematika. Osnovanie informatiki. M.: Mir, 1998. 703 p.
Feller V. Vvedenie v teoriyu veroyatnostey i eyo prilozheniya. M.: Mir, 1984. 528 p.
Bondarenko B.A. Obobschyonnyie treugolniki i piramidyi Paskalya, ih fraktalyi, grafyi i prilozheniya. Tashkent, 1990. 192 p.
Kuzmin O.V. Nekotoryie kombinatornyie chisla v obobschyonnoy piramide Paskalya. In: Asimptoticheskie i perechislitelnyie zadachi kombinatornogo analiza. Irkutsk: Izdatelstvo Irkutskogo universiteta, 1998. p. 90–100.
Kuzmin O.V. Obobschennyie piramidyi Paskalya i ih prilozheniya. Novosibirsk, 2000. 64 p.
Uspenskiy V.A. Treugolnik Paskalya. M.: Nauka, 1979. 48 p.
Enzenzberger H.M. Duh chisla. Kharkov: Knizhnyiy klub «Klub simeynogo dozvillya», 2002. 272 p.
Gardner M. Matematicheskie novellyi. M.: Mir, 1974. 456 p.