• O. F. Kashpur Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Keywords: linear space, Euclidean space, Hermite’s interpolation formula, fundamental polynomials


In a linear infinite-dimensional space with a scalar product and in a finite-dimensional Euclidean space the interpolation Hermite polynomial with a minimal norm, generated by a Gaussian measure, contains fundamental polynomials are shown. The accuracy of Hermit’s interpolation formulas on polynomials of the appropriate degree are researched.


Cox D. A. Applications of Polynomial Systems. AMS, Mathematics, 2020. 250 p.

Nashed M. Generalized Inverses and Applications. New York: Academic Press, 1976. 1054 p.

Makarov V. L., Khlobystov V. V., Yanovich L. A. Methods of operator interpolation. Kyiv: Institute of Mathematics of NAN of Ukraine, 2010. V. 83. 516 p.

Porter W. A. An overview of polinomic system theory. IEEE Proc. Special issue on system theory. 1976. Vol. 64, No1. P. 18–26.

Prenter P. On Polynomial Operators and Equations. Nonlinear Functional Analysis and Application. New York: Acad. Press. Rail Edition, 1971. 566 p.

Babenko K. I. Basics of numerical analysis. Moskow, Izhevsk: Reguliarnaya i haoticheskaya dinamika, 2002. 848 p.

Berezin I. S., Zhidkov N. P. Numerical methods. V. 1. Moskow: Nauka, 1966. 632 p.

Gikhman I. I., Skorokhod A. V. Theory of random processes. V 1. Moskow: Nauka, 1971. 664 p.

Kashpur O. F., Khlobystov V. V. Lagrange interpolation polynomial in a linear space with scalar product. Dopovidi of NAN of Ukraine. 2018. No 8. P. 12–17.

Kashpur O. F. Hermite interpolation polynomial for functions of several variables. Cybernetics and System analysis. 2022. V. 58. P. 399–408.

Kashpur, O. F. Solving Hermite Interpolation Problem in Finite-Dimensional Euclidean Space. Cybernetics and System Analysis, 2022, V. 58, P. 259–267.

Makarov V. L., Khlobystov V. V., Yanovich L. A. Basics of theory of polynomial interpolation. Kyiv: Institute of Mathematics of NAN of Ukraine, 2010.

Makarov V. L., Khlobystov V. V., Yanovich L. A. Interpolation of operators. Kyiv: Naukova Dumka, 2000. 406 p.

Trenogin V. A. Functional analysis. M.: Fizmatlit, 2002. 495 p.

Khlobystov V. V., Kashpur O. F. Operator interpolant of Hermite kind in Hilbert space whicy is asymptotically precise on polynomials. Visnyk of Kyiv National University, seriya fiz-mat nauki. 2005. No 2. P. 437–448.